If it's not what You are looking for type in the equation solver your own equation and let us solve it.
144+10x=32x^2
We move all terms to the left:
144+10x-(32x^2)=0
determiningTheFunctionDomain -32x^2+10x+144=0
a = -32; b = 10; c = +144;
Δ = b2-4ac
Δ = 102-4·(-32)·144
Δ = 18532
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{18532}=\sqrt{4*4633}=\sqrt{4}*\sqrt{4633}=2\sqrt{4633}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{4633}}{2*-32}=\frac{-10-2\sqrt{4633}}{-64} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{4633}}{2*-32}=\frac{-10+2\sqrt{4633}}{-64} $
| 7n=-3+6n | | -6=n/n-10 | | –8r+–12r−–15r=20 | | 0.4(0.5x-4)=13 | | 13h=-39 | | 3(x+4)=7x+8 | | 1) 3x+2x+4=39 | | 24c-7=10 | | 4x+3x=3x+8 | | 4n−12=24 | | 20x+30=4x–36 | | O=—6p—6p | | (3x-2)=(4x-11) | | 2/5(1/2x-4)=13 | | 9x-5=(7)+(3x+4) | | 0.2c−3=−10 | | 3/2t-16+16=4/3t-6+16 | | t=34.3t+597 | | 3x-5=10. | | 11+6b+3=6(b+2)-(b+1) | | 4a=1/2(8+2) | | 1/2(2x+3)=-9 | | 9/5x+32=-13 | | 3f^2+f=4 | | 6-(2x+3)=4(2.5-2.5x | | 2(3b-4)=22+10b | | 2(3m–2)–4=2+9m–1 | | =x2+2x–8 | | 5(2x-10)+12=30 | | -5(5x+3)-5x+1=44 | | 7+t=29 | | -11(k+3)=2(-9-7k) |